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ABSTRACT 17 

Background 18 

Single-cell RNA-Sequencing (scRNA-Seq) has provided single-cell level insights into complex 19 

biological processes. However, the high frequency of gene expression detection failures in 20 

scRNA-Seq data make it challenging to achieve reliable identification of cell-types and 21 

Differentially Expressed Genes (DEG). Moreover, with the explosive growth of single-cell data 22 

using 10x genomics protocol, existing methods will soon reach the computation limit due to 23 

scalability issues. The single-cell transcriptomics field desperately need new tools and 24 

framework to facilitate large-scale single-cell analysis.  25 

Results 26 

In order to improve the accuracy, robustness, and speed of scRNA-Seq data processing, we 27 

propose a generalized zero-inflated negative binomial mixture model, “JOINT,” that can perform 28 

probability-based cell-type discovery and DEG analysis simultaneously without the need for 29 

imputation. JOINT performs soft-clustering for cell-type identification by computing the 30 

probability of individual cells, i.e. each cell can belong to multiple cell types with different 31 

probabilities. This is drastically different from existing hard-clustering methods where each cell 32 

can only belong to one cell type. The soft-clustering component of the algorithm significantly 33 

facilitates the accuracy and robustness of single-cell analysis, especially when the scRNA-Seq 34 

datasets are noisy and contain a large number of dropout events. Moreover, JOINT is able to 35 

determine the optimal number of cell-types automatically rather than specifying it empirically. 36 

The proposed model is an unsupervised learning problem which is solved by using the 37 

Expectation and Maximization (EM) algorithm. The EM algorithm is implemented using the 38 
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TensorFlow deep learning framework, dramatically accelerating the speed for data analysis 39 

through parallel GPU computing.  40 

Conclusions 41 

Taken together, the JOINT algorithm is accurate and efficient for large-scale scRNA-Seq data 42 

analysis via parallel computing. The Python package that we have developed can be readily 43 

applied to aid future advances in parallel computing-based single-cell algorithms and research in 44 

various biological and biomedical fields. 45 
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 50 

BACKGROUND 51 

scRNA-Seq technology has significantly advanced the understanding of human disease and 52 

underlying biological processes at the single-cell level [1, 2]. This ever-evolving technique has 53 

revealed cell lineage [3], cell-type heterogeneities [4, 5], and distinct patterns of gene expression 54 

[6] that cannot be identified by conventional bulk cell analysis. Despite the rapid growth and 55 

maturation of the technique, many experimental and computational challenges remain [7]. Due to 56 

the limited amount of RNA extracted from each cell and various technical factors [8], e.g. 57 

amplification bias and low RNA capture rate, scRNA-Seq data are very noisy and contain 58 

frequent gene expression detection failures (i.e. dropout events [9]). Although several scRNA-59 

Seq imputation methods such as MAGIC [10], scImpute [11], and Saver [12] have been 60 
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developed to improve analytical accuracy, over-processing of data can cause information loss, 61 

and increase the lower bound of detection-error probability due to data processing inequality and 62 

Fano’s lemma in information theory [13] (see Methods). Moreover, the massive size of scRNA-63 

Seq datasets demands extensive processing time, hindering the applicability of imputation 64 

methods to ever-growing collections of scRNA-Seq data [14]. Together, these challenges 65 

significantly hinder the progress of scRNA-Seq in its use as a technique and its application to 66 

biological and biomedical research. 67 

 Traditional single-cell data processing methods typically perform cell-type identification 68 

followed by subsequent DEG analysis [15-17]. However, there are major disadvantages with this 69 

two-step method. First, cell-type identification or cell-clustering accuracy may significantly 70 

impact DEG analysis. Second, potential valuable information derived from DEG algorithms is 71 

not used in cell-type identification. Here, we propose a generalized zero-inflated negative 72 

binomial mixture model, “JOINT,” that can perform probability-based cell-type discovery and 73 

DEG analysis simultaneously without the need for imputation. The proposed model is an 74 

unsupervised learning problem which is solved by using the EM algorithm. Most published 75 

studies do not provide test results for model validation, and the statistical distribution of single-76 

cell data remains unclear. We show for the first time (by a statistical test) that the excessive zero-77 

counts in scRNA-Seq data can be explained by this model. 78 

 Moreover, JOINT performs soft-clustering for cell-type discovery by computing the 79 

probability of cell identity for individual cells, where each cell can belong to multiple cell types 80 

with different probabilities. This is different from existing algorithms which typically perform 81 

hard-clustering where each cell can only belong to one cell type. JOINT identifies the optimal 82 

number of cell-types through Akaike Information Criterion (AIC) automatically rather than 83 
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specified empirically. All parameters in JOINT are calibrated automatically, without the need for 84 

setting hyperparameters, e.g. number of cell-types. Existing clustering algorithms typically 85 

perform log-transformation on the count data first, whereas JOINT uses the raw count data 86 

directly. Therefore, potential biases introduced during data processing are greatly reduced. We 87 

comprehensively evaluated the impact of dropout probability and tested the performance of 88 

JOINT on cell-clustering and DEG analysis using simulated and real scRNA-Seq datasets. We 89 

show that JOINT obtains better clustering performance on both simulated and real, large-scale 90 

scRNA-Seq datasets when compared to existing algorithms.  91 

 We also leverage parallel computing methods in data processing: A Python package is 92 

implemented and run on GPU using the TensorFlow deep learning framework’s 93 

(http://www.tensorflow.org/) low-level API to solve our unsupervised learning model. The 94 

computational speed of the JOINT algorithm is 3,532 times faster when run on a GPU, versus a 95 

Python NumPy implementation on CPU for a simulated dataset with 1,000 cells and 2,000 genes. 96 

We use instructions from TensorFlow directly instead of high-level neural networks APIs such 97 

as Keras (https://keras.io/). The Python package that we have developed is the first that can 98 

perform cell-clustering and DEG analysis simultaneously on GPU, which dramatically 99 

accelerates the computational speed for large-scale scRNA-Seq data analysis. Although not 100 

required by JOINT for cell-type identification or DEG analysis, an imputation algorithm is 101 

embedded for data visualization.  102 

 Finally, our DEG analysis algorithm directly applies soft-clustering results from JOINT, 103 

rendering the ability to extract high quality cell-type information and perform accurate DEG 104 

identification. Existing GPU-based imputation algorithms only use GPU in the imputation step 105 

and still require standard cell-clustering and DEG pipeline in downstream data analysis, which 106 
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are typically performed on CPU. In contrast, our model does not require the imputation step and 107 

can perform both cell-clustering and DEG analysis on GPU. Our study shows a new paradigm of 108 

leveraging the use of GPU on large-scale scRNA-Seq data analysis. Overall, the JOINT 109 

algorithm provides a more accurate, robust, and scalable method for analysis of large-scale 110 

scRNA-Seq datasets. The package that we developed is generic and can be readily applied to aid 111 

future advances in parallel computing-based single-cell algorithms. 112 

 113 

RESULTS 114 

Overview and Validation of the JOINT Algorithm 115 

Existing bulk DEG analysis algorithms (e.g. DESeq2 [18]) and single-cell DEG analysis 116 

algorithms (e.g. MAST [19]) assume that cell-type is given, and DEG detection is performed 117 

within these given cell-types. As such, cell-type accuracy significantly impacts DEG detection 118 

and analysis. Additionally, parameters derived from DEG algorithms may provide useful 119 

information for cell-type discovery. We investigate whether simultaneously performing cell-type 120 

identification and downstream DEG model calibration benefits both processes. In the JOINT 121 

algorithm, we consider the probability of observing count x follows a general mixture model. We 122 

assume that each mixture component takes a generalized zero-inflated negative binomial model 123 

with multiple negative binomial components (see Methods). Instead of performing hard-124 

clustering for cell-type identification, where a given cell is clustered into a particular cell-type, 125 

we obtain the probability of individual cells belonging to each cell-type with JOINT. The 126 

probability of observing count x from cell-type k and model parameters are calibrated jointly for 127 

cell-type discovery and DEG analysis, rather than fixing cell-type first and estimating DEG 128 

parameters thereafter (Methods and Fig. 1a). For each cell-type k and gene g, our model extends 129 
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the current use of zero-inflated negative binomial distribution [20] by allowing multiple negative 130 

binomial components rather than one. Additionally, we derive an EM algorithm to calibrate all 131 

parameters in the zero-inflated negative binomial model for single-cell data automatically, which 132 

can also be used for arbitrary numbers of negative binomial components.  133 

 We first validated the model by testing whether it could explain the excessive zero-counts 134 

in a real scRNA-Seq dataset. We chose the Zeisel dataset [21] and analyzed gene expression with 135 

the “Oligodendrocyte” label provided in the dataset (see Methods). For each gene, we tested the 136 

performance of three JOINT variations: 1) negative binomial (Poisson-Gamma mixture), 2) zero-137 

inflated negative binomial, and 3) zero-inflated negative binomial with two components. We 138 

trained all three variations of the algorithm on GPU using TensorFlow, obtained predicted zero-139 

count probability for each gene across all cells and compare the mean to the empirical zero-count 140 

probability. Then, we tested if the predicted zero-count probability is significantly different than 141 

the empirical value for each JOINT variation (see Methods). We found that p-values for the 142 

comparisons were: p=1.58e-19 for 1) negative binomial, p=0.057 for 2) zero-inflated negative 143 

binomial, and p=1.12e-10 for 3) zero-inflated negative binomial with two components. Since the 144 

zero-count probability from 2) zero-inflated negative binomial model is not significantly 145 

different than the empirical value, we concluded that this variation can recover the zero-count 146 

probability. This finding provides the first statistical evidence that excessive zero-counts in 147 

scRNA-Seq data can be explained by a zero-inflated negative binomial distribution. In the rest of 148 

the paper, we assume that gene expression follows the zero-inflated negative binomial 149 

distribution (with one component), but arbitrary numbers of negative binomial components can 150 

be selected and applied in the model for different single-cell datasets. 151 
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Next, as a sanity test, we examined whether the JOINT algorithm can converge to true 152 

values. We generated a simulated dataset with two cell-types (clusters) and two genes as the 153 

“ground truth” (see Methods). JOINT successfully converged to true values when we varied the 154 

number of iterations, number of samples (cells), and dropout probabilities (Fig. 1b-1d and Fig. 155 

S1-S3). 156 

 157 

Evaluation of Clustering Performance using Simulated Datasets 158 

We next compared the clustering performance of JOINT to other algorithms using a simulated 159 

dataset containing two cell-types and two genes (Fig. 2 and Table S1). We fixed the dropout 160 

probability at q0=0.2 and generated 5,000 cells (see Methods). For published algorithms, we 161 

applied K-means clustering with 100 random initial points to the dataset and chose clustering 162 

results with the best Adjusted Rand Score for comparison. We compared the performance of 163 

JOINT on the original non-imputed data, to K-means on the non-imputed and Saver [12] -164 

imputed datasets (Fig. 2a-2h and Table S1). ScImpute [11] was not included since it cannot be 165 

applied to 2-dimensional data. We demonstrated that JOINT obtained much higher clustering 166 

scores on the non-imputed data, than K-means on both the non-imputed and Saver-imputed 167 

datasets. JOINT’s performance also surpassed that of K-means on the original data without 168 

dropout (Table S1). In this dataset, K-means performance was worse in log-transformed counts 169 

when compared to non-log-transformed data, suggesting log-transformation may lead to 170 

information loss (Fig. 2f and 2g). In contrast, non-log-transformed raw data can be directly used 171 

in the JOINT algorithm, minimizing potential bias and information loss. The JOINT algorithm 172 

can also automatically optimize the number of clusters through AIC, rather than forcing a choice 173 

from intuition. We ran the JOINT algorithm with the number of clusters K ranging from 1 to 5. 174 
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For each K, we randomly chose initial points, ran the proposed JOINT algorithm 10 times, and 175 

chose results with the highest likelihood. We found that the log likelihood did not increase when 176 

K was greater than 2, and both AIC and Bayesian Information Criterion (BIC) were minimized 177 

when K=2. Therefore, JOINT took K=2 as the optimal number of clusters, which precisely 178 

predicted the number of clusters in the simulated dataset (Fig. 2i-2k). 179 

We further examined JOINT’s performance on a more complex simulated dataset with 180 

three cell-types, using parameters derived from published scRNA-Seq data to mimic real 181 

experimental settings (Methods and Fig. S4). We systematically examined the clustering 182 

performance of JOINT at different dropout probabilities and DEG numbers. We evaluated the 183 

performance of JOINT and other published algorithms at dropout probability q0=0.1, 0.2 and 0.3 184 

and DEG number n=50, 100 and 150 (Fig. 3 and Fig. S5-S7). We generated 10 datasets for each 185 

dropout probability and DEG number combination, and applied JOINT, Saver, and scImpute to 186 

each dataset. We showed that JOINT obtained the highest Adjusted Rand Index score among all 187 

algorithms tested, strongly suggesting its performance was superior over Saver and scImpute 188 

(Fig. 3a-3c and Fig. S6a-S6d). It is worth noting that although JOINT performs cell-type 189 

identification without the need of imputation, it acquires the ability to impute for data 190 

visualization (Methods, Fig. 3, and Fig. S5-S7). 191 

Finally, we compared the clustering outputs from JOINT, Saver, and scImpute to the 192 

original dataset without dropout, to access the accuracy of performance. Since we used a 193 

simulated dataset, “true labels” without dropout were known. We correlated the clustering 194 

outputs to “true labels,” and compared the correlation coefficients for the different algorithms. 195 

Higher correlation coefficients indicate better performance. We found that when we performed 196 

this correlation test at different dropout probabilities and DEG numbers, JOINT obtained higher 197 
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correlation coefficients than other imputation methods (Fig. 3d, 3e, and Fig. S6e). Overall, we 198 

leveraged a simulated dataset with known cell-types to evaluate the performance of JOINT at 199 

different dropout probabilities and DEG numbers. Since the simulated dataset was generated 200 

using parameters derived from real scRNA-Seq data, we validated the JOINT algorithm in 201 

conditions that mimic real experimental settings. 202 

 203 

Evaluation of Clustering Performance using Real, Large-scale scRNA-Seq Datasets 204 

To futher evaluate JOINT’s performance, we compared its clustering performance and 205 

computing time to Saver and scImpute using real, large-scale scRNA-Seq datasets (Baron [22] 206 

and Zeisel [21]). The cell-types identified by JOINT algorithm matched the published results 207 

when applied to the Baron and Zeisel data (Fig. 4d and 4h). JOINT also obtained higher or 208 

comparable Adjusted Rand Index, Jaccard Index, and Adjusted Mutual Information scores when 209 

compared to Saver and scImpute methods (Fig. 4 and Table 1). 210 

We then evaluated the computing time of JOINT compared to other imputation 211 

algorithms. We found both the performance and speed of the JOINT algorithm was dramatically 212 

accelerated over existing algorithms (Table 1). This is the first study that systematically 213 

examined the performance and computing time of different imputation algorithms. The JOINT 214 

algorithm functions as a useful parallel computing-based method for scalable scRNA-Seq 215 

analysis. Since JOINT runs from an initial point, we also examined whether clustering 216 

performance was improved by the EM algorithm through JOINT, or relied heavily on initial 217 

conditions. We compared the JOINT-obtained clustering scores on the Zeisel dataset using 218 

randomly selected initial points or those selected through K-means with and without the 219 

application of EM algorithm. We demonstrated that the EM algorithm indeed improved the 220 
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clustering performance of JOINT when the initial points were either randomly selected or using 221 

K-means (Fig. S8). 222 

 223 

Evaluation of JOINT Performance in DEG analysis 224 

The JOINT algorithm also acquires the function of performing DEG analysis simultaneously 225 

with cell-type identification. We evaluated JOINT’s performance in DEG analysis using a 226 

simulated dataset with 3 clusters from cells labeled “CA1 Pyramidal” from the Zeisel dataset 227 

[21] (see Methods). We examined JOINT’s performance in two conditions: true cell-type labels 228 

as known or unknown. First, we assumed that all cell-types were known, and set the dropout 229 

probability to q0=0.1, 0.2, and 0.3 for all cells and selected n=50, 100, and 150 DEG in the 230 

simulated dataset. In real experimental settings, dropout probability is unlikely to be a set 231 

number across all cells. Therefore, we varied the dropout probability q0 by 0.05 for each cluster 232 

(e.g. When q0,mean for all cells=0.1, we obtained q0=0.05, 0.1, and 0.15 for clusters 1, 2, and 3 233 

respectively). The performance of JOINT and other published DEG analysis algorithms were 234 

evaluated using the false/true positive rate relationship (Receiver Operating Characteristic (ROC) 235 

curve). DEG analysis results from cluster 1 and cluster 3 were then compared across algorithms 236 

(Fig 5a-5d). When we used Area Under the Curve (AUC [23]) to compare the performance of 237 

MAST [19], scDD [24], DESeq2 [18], and JOINT, we found that JOINT obtained higher AUC 238 

scores compared to other algorithms at different dropout probabilities and DEG numbers (Fig. 239 

5a-5d). 240 

 Next, we considered the case where cell-type labels were unknown, but derived from a 241 

clustering algorithm. Since cell-types are unknown before analysis in real scRNA-Seq datasets, 242 

this test allows us to evaluate all algorithms in conditions similar to real experiments. For 243 
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published DEG analysis algorithms, we first performed K-means clustering and spectral 244 

clustering on log(1+count), PCA on log(1+count) with 2 components, and PCA on log(1+count) 245 

with components explaining 25% or 40% of variance on the simulated data. Cluster labels which 246 

generate the highest Adjusted Rand Index scores were chosen for DEG analysis for published 247 

methods. For JOINT, we initialized the algorithm with the same 8 conditions for fair 248 

comparison. We want to emphasize that for existing DEG analysis methods, true cell labels must 249 

be known in order to compute Adjusted Rand Index scores. Since we opted to use the highest 250 

Adjusted Rand Index scores for published algorithms, it is in fact, an overestimation of their 251 

performance. In contrast for JOINT, we chose the clustering results that provided the highest 252 

likelihood for individual cells belonging to certain clusters, thus eliminating the need of knowing 253 

true cell labels beforehand. Based on the clustering results from each algorithm, we identified 254 

cell-types with the highest correlation with the original clusters 1 and 3, and performed DEG 255 

analysis on these clusters. We compared AUC scores for MAST, scDD, DESeq2 and JOINT 256 

algorithms. We found the JOINT algorithm obtained the best AUC scores among all the DEG 257 

analysis methods tested at different dropout probabilities (same dropout probability across all 258 

cells) and DEG numbers (Fig 5e-5h).  259 

Finally, we evaluated JOINT’s performance in DEG analysis using a real, large-scale 260 

scRNA dataset. We analyzed a scRNA-Seq dataset GSE75748 [25] with both bulk and single-261 

cell RNA-seq data on human embryonic stem cells (ESC) and definitive endoderm cells (DEC). 262 

This dataset includes four samples in H1 ESC, and two samples in DEC from bulk RNA-Seq; 263 

212 cells in H1 ESC and 138 cells in DEC from scRNA-Seq. We used an R package (DESeq2) 264 

to identify DEG from bulk data and applied MAST, scDD, and DESeq2 to identify DEGs from 265 

the original scRNA-seq data or imputed data by Saver and scImpute. As DESeq2 requires non-266 



-13- 
 

zero integer inputs, we rounded the imputed counts and added 1 for DEG analysis. We applied 267 

different thresholds to False Discovery Rates (FDRs) of genes in bulk data to obtain a DEG list 268 

as the reference for single-cell DEG analysis. Next, we compared AUC scores for JOINT and 269 

other DEG analysis algorithms in combination with imputation methods. All algorithms that 270 

were used for comparison include: MAST+Original, MAST+Saver, MAST+scImpute, 271 

scDD+original, scDD+Saver, scDD+scImpute, DESeq2+Original, DESeq2+Saver, 272 

DESeq2+scImpute, and JOINT. We found JOINT had superior performance over all other 273 

existing imputation and DEG analysis algorithms that were tested (Fig. 5i).  274 

We also systematically examined the computational time of JOINT. We compared the 275 

computational time of one iteration in the EM algorithm between TensorFlow using GPU, 276 

TensorFlow using CPU (run on compiled C code), and Python-based NumPy implementation 277 

using CPU. We examined the scenario with 1,000 cells and 9 cell-types. We simulated the 278 

dataset randomly and varied the number of genes from 1,000 to 2,500 (Fig. 5j). When the 279 

number of genes is 2,000 (based on the number of highly differential genes used in Seurat 280 

procedure), we found that TensorFlow run on GPU had a 35.6x speedup over TensorFlow run on 281 

CPU, and a 3,532x speedup over NumPy run on CPU (Fig. 5j and Table S2). Overall, we 282 

demonstrated that the performance of JOINT significantly improved both the accuracy and 283 

efficiency of DEG analysis compared to current algorithms.  284 

 285 

DISCUSSION 286 

We propose a mathematical algorithm, “JOINT,” that performs cell-type discovery and DEG 287 

analysis by parallel computing. Since there is no need for imputation, the potential for 288 

information loss from data over-processing is minimized. Instead of assigning each cell into a 289 
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hard-cluster, this cell-type probability-based soft-clustering approach makes this algorithm more 290 

accurate and robust. We validated the model extensively, and examined the performance of 291 

JOINT on cell-type identification and DEG analysis using both simulated and real, large-scale 292 

scRNA-Seq datasets. Most published studies do not provide test results for model validation, and 293 

the statistical distribution of single-cell data from these models is unclear. We show, for the first 294 

time, that excessive zero-counts in real scRNA-Seq data can be explained by a properly trained 295 

zero-inflated negative binomial distribution. All parameters in JOINT are calibrated 296 

automatically without needing to set any hyperparameters, such as the number of cell-types. 297 

While existing clustering algorithms typically perform log-transformation on the count data first, 298 

our model uses the raw count data directly. Therefore, potential biases introduced during data 299 

processing are greatly reduced. Moreover, when we evaluate the performance of JOINT on cell-300 

type identification and DEG analysis, the joint-analysis feature of JOINT makes it more reliable 301 

and efficient over existing algorithms that were tested.  302 

We developed a Python package using the TensorFlow low-level API to train our model 303 

on GPU. The computational speed of the JOINT algorithm is 3,532 times faster when run on a 304 

GPU versus a Python NumPy implementation on CPU for a simulated dataset. The Python package 305 

we have developed is the first one that can perform cell-clustering and DEG analysis 306 

simultaneously on GPU, which dramatically facilitates an increase in computing speed for large-307 

scale scRNA-Seq data analysis. The Python package is generic and can be applied to a generalized 308 

zero-inflated negative binomial distribution with arbitrary number of negative binomial 309 

components for different scRNA-Seq datasets. 310 

In conclusion, JOINT can be readily applied to aid future advances in parallel computing-311 

based single-cell algorithms. JOINT greatly improves the accuracy, scalability and speed of single-312 
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cell data processing, making it a suitable candidate for future work involving scalable scRNA-Seq 313 

data analysis.  314 

 315 

METHODS 316 

Over-processing of Data by Imputation May Cause Information Loss Due to Data 317 

Processing Inequality and Fano's Lemma 318 

Let three random variables form the Markov chain X → X′ → Y, implying that the conditional 319 

distribution of Y depends only on X′ and is conditionally independent of X. By data processing 320 

inequality [13], the mutual information between X and Y is greater than or equal to that between 321 

X′ and Y, i.e. 322 

X is observed single-cell data, X′ is imputed data, Y is decision variables, such as cell-types or 323 

DEG. This equation indicates the information of data cannot be increased from data imputation. 324 

Note that if we have a priori information S about genes or cell-types, we may have I(X; Y) ≤ I(X′; 325 

Y|S), which indicates data imputation with a priori information may improve mutual information. 326 

But even in this case, we still have I(X; Y|S) ≥ I(X′; Y|S).  327 

 From Fano’s inequality, we have a lower bound on the detection-error probability (cell-328 

type mis-classification or DEG mis-detection)  329 

From data processing inequality, if processed data X′ instead of un-processed data X is used, the 330 

right-hand side of equation (2) becomes bigger. Even though (2) is only a lower bound, data 331 

imputation increases the lower bound of error-detection. Therefore, performing data imputation 332 

(1) 

(2) 
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on observed data and performing subsequent analysis leads to information loss and an increase of 333 

a lower bound on the detection-error probability. This indicates that there is an opportunity to 334 

perform cell-type discovery and DEG analysis simultaneously to prevent such an information 335 

loss. 336 

 337 

JOINT Algorithm 338 

In the JOINT algorithm we consider a general mixture model 339 

where x is observed count number, k is the number of cell-types, πk is the probability of choosing 340 

cell-type k and fk(x|θk) is the probability of observing x given parameters θk in cell-type k. Given 341 

x and θk, we compute the posterior probability of observed counts x from cell-type k as  342 

Rather than using hard-clustering methods where a given cell is clustered into a particular cell-343 

type, we obtain the probability of individual cell belonging to each cell-type (Fig. 1a). If a cell 344 

has non-zero probability p belonging to cell-type k, then it contributes accordingly (proportional 345 

to p) to clustering and DEG analysis for cell-type k (Fig. 1a). Here, we assume that fk(x|θk) takes 346 

a generalized zero-inflated negative binomial model with multiple negative binomial components  347 

where there are L components, qg,k,0 is the dropout probability for gene g in cell-type k, 1  is 348 

1 when xg=0, and otherwise 0. qg,k,l is the probability that the observed count xg is from the l-th 349 

negative binomial component for gene g in cell-type k, and sc is a cell level scaler. We choose 350 

the same cell scaler as Seurat process which normalizes the library size to 10,000. The dropout 351 

probability qg,k,0 is the probability of observing zero-counts, regardless of the real expression 352 

.
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level of gene g. When the first dropout term is omitted and L=1, we obtain a negative binomial 353 

model. When L=2, the model reduces to the zero-inflated negative binomial model. When L=3, 354 

we obtain a zero-inflated negative binomial model with two components. Note that fk(x|θk) can be 355 

also adapted and used for other models in DEG analysis.  356 

To generate observed count x, we first draw a cell-type k from π, which determines a set 357 

of parameters used for each gene in cell-type k. Then, we choose a negative binomial component 358 

type l with probability qg,k,l. When l=0, we set xg=0, which corresponds to dropout and the 359 

process stops. When l>0, we choose αg,k.l and βg,k.l for each gene in cell-type k and generate a 360 

Poisson intensity λg,k,l. Finally, we generate the observed count xg from a Poisson distribution 361 

with intensity λg,k,l. Given observed counts in a given cell x=[x0, … , xG−1], we estimate θ={αg,k,l, 362 

βg,k,l, qg,k,l, πk} by maximizing the Probability Mass Function where we assume individual genes 363 

obtain independent parameters αg,k,l, βg,k,l, qg,k,l.  364 

We do not assume a constant dispersion across all genes but rather each gene has its own 365 

αg,k,l and βg,k,l. The dropout probability qg,k,0 is optimized for each gene without assuming specific 366 

dependence on the mean expression. Each cell-type has its own negative binomial distribution 367 
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rather than a single distribution shared across all cell-types. The mixture model is an 368 

unsupervised learning problem which is solved using the EM algorithm.  369 

 The probability of x from cell-type k and negative binomial distribution parameters αg,k,l 370 

and βg,k,l (also used for DEG analysis) are calibrated jointly, rather than fixing the cell-type first 371 

and estimating parameters for DEG analysis thereafter. Although usually challenging when run 372 

on CPU especially with big dataset, model calibration is successfully achieved when it is trained 373 

on GPU. All model training and testing was performed on a computer with Intel Xeon CPU E5-374 

2686 v4 @ 2.30GHz with 62GB RAM and NVIDIA Tesla K80 GPU with 17GB memory. 375 

 376 

Model Validation Using the Zeisel Dataset 377 

We chose the Zeisel dataset [21] and analyzed the gene expression with the “Oligodendrocyte” 378 

label provided in the dataset for model validation. Top and bottom 10% cells were removed 379 

based on their library size. Genes that have non-zero expression between 30% and 90% were 380 

chosen. This resulted in a dataset with 742 cells and 3,069 genes for model testing and 381 

validation. For each gene, we tested the performance of three variations of the JOINT algorithm: 382 

1) negative binomial (Poisson-Gamma mixture), 2) zero-inflated negative binomial (initial points 383 
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were: dropout probability q0=0.1, α=mean, and β=1), 3) zero-inflated negative binomial with two 384 

components where one component started from α=0.1 and β=1 (mimic a Poisson component with 385 

rate 0.1 from reference [23]) and the other one started from α=mean and β=1 in training. The 386 

initial probability q0 was set to 0.5 for the first and 0.4 for the second components. For the 387 

proposed generalized zero-inflated negative binomial model with multiple negative binomial 388 

components, the probability of getting zero-count is 389 

 In order to test whether the three variations of JOINT algorithm can explain the zero-390 

counts in the Zeisel dataset, we trained all three variations of the algorithm on GPU using 391 

TensorFlow, obtained predicted zero-count probability �̂� ,  for each gene g and cell c, then 392 

calculated the mean across all cells for each gene �̂� ∑ �̂� , . We compared �̂�  to the 393 

empirical zero-count probability for each gene �̄�  by counting the number of cells with zero-394 

count (for this gene), divided by the total number of cells. Then, we performed two-sided student 395 

t-tests with the null hypothesis that �̂� �̄�  has mean 0, to examine whether each variation of 396 

the model can recover the zero-count probability. We found that p-values were: p=1.58e-19 for 397 

negative binomial, p=0.057 for zero-inflated negative binomial, and p=1.12e-10 for zero-inflated 398 

negative binomial with two components. Since we could not reject the null hypothesis (i.e. 399 

predicted zero-count probability is the same as the empirical estimate at 95% confidence level), 400 

we concluded that the zero-inflated negative binomial model can recover the zero-count 401 

probability. Although model 3 subsumes model 2, the EM algorithm may converge to a 402 

suboptimal local optimum when model 3 is initialized as in Methods. 403 

 404 

Generation of a Simulated Dataset with Two Genes and Two Cell-types 405 

.
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Simulation set up: In order to validate and test the clustering performance of the model (Fig. 1b-406 

1d, Fig. 2, Fig. S1-S3 and Table S1), we generated a simulated dataset with two genes and two 407 

cell-types (clusters) as the “ground truth.” To set up the simulation, we chose π={0.4,0.6}, 408 

qg,k,0=0.2, qg,k,1=0.8, and βg,k,1=1.0; first cluster α0,0,1=10 and α1,0,1=5; second cluster α0,1,1=30 and 409 

α1,1,1=20. 410 

Convergence of the model with iterations: We generated 10,000 samples from the mixture model 411 

using parameters described above. In the EM algorithm, we chose initial values π={0.5,0.5}, 412 

qg,k,0=0.1, qg,k,l=0.9, and βg,k,l=1.0; first cluster α0,0,1=8 and α1,0,1=8; second cluster α0,1,1=25 and 413 

α1,1,1=25. The JOINT algorithm converged after 30 iterations (Fig. 1b and Fig. S1).  414 

Convergence of the model with number of samples: For a given number of samples, we randomly 415 

generated 50 datasets and applied JOINT on each dataset for statistics. As the number of samples 416 

increased, we found that the EM estimate converged to the actual values with smaller variances 417 

(Fig. 1c and Fig. S2). This agrees with the fact that Maximum Likelihood (ML) estimates 418 

converge almost surely to true values asymptotically when the number of samples goes to 419 

infinity [26]. 420 

Convergence of the model with dropout probability: We fixed the number of samples as 1,000 421 

and varied the dropout probability qg,k,0 from 0.1 to 0.5 with step size of 0.1. At each dropout 422 

probability, we generated 50 datasets and ran JOINT on each dataset to test the convergence 423 

(Fig. 1d and Fig. S3).  424 

 425 

Generation of a Simulated Dataset with Three Cell-types using Zeisel Data 426 
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We simulated a scRNA-Seq dataset with 3 cell-types (Fig. 3 and Fig. S5-S7). We trained JOINT 427 

on cells with the “CA1 Pyramidal” label in the Zeisel dataset [21] for each gene using the EM 428 

algorithm. First, we chose cells with >10,000 library size and genes with non-zero-counts in at 429 

least 40% of cells. Then, we trained the JOINT algorithm on the 3,529 genes and 834 cells that 430 

were selected. Next, we randomly chose 1,000 genes without replacement from the selected 431 

3,529 genes and generated three cell-types (1,200 cells in total). We randomly generated gene 432 

counts for 400 cells in each cell-type. In order to generate cells with different DEG numbers, we 433 

randomly selected n genes (n=50, 100 and 150) from the chosen 1,000 genes without 434 

replacement and set the mean expression of these genes 1.5 times higher in one cluster than in 435 

the other two (1.5 is the median of the gene expression ratio between cells with “CA1 436 

Pyramidal” and “Oligodendrocytes” labels in the dataset (Fig. S4)).  437 

 438 

Evaluation of Clustering Performance  439 

Evaluation of clustering performance using simulated data sets with three genes and three 440 

clusters: We assumed the number of cell-types K=3 was known in all algorithms. We performed 441 

K-means clustering and spectral clustering on imputed counts from published algorithms with 442 

the following transformations: log(1+count), PCA on log(1+count) with 2 components, PCA on 443 

log(1+count) with components explaining 25% or 40% of variance. Since we do not know the 444 

transformation required to achieve best performance for published imputation algorithms, we 445 

tested all 8 transformations for each, and chose the one with the best score for comparison. We 446 

also ran the JOINT algorithm (initialized with the same 8 conditions) using original unimputed 447 

counts, and chose the one with the highest likelihood as the final solution. In order to obtain 448 

clustering scores for JOINT, we assigned each individual cell to the cell-type with the highest 449 
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posterior probability, converting soft-clustering into hard-clustering results. Although Seurat 450 

process [15] can also be used for clustering, different parameters must be chosen for each 451 

individual dataset in order to achieve cluster number K=3. Given that the performance of 452 

multiple algorithms at different dropout probabilities and DEG numbers needed to be tested 453 

extensively, K-means clustering method was used to simplify the process. It is also worth 454 

emphasizing that for data mapping and visualization in lower dimensional space, we applied the 455 

PCA from the original data without dropout, to the imputed data from published algorithms and 456 

data from JOINT, so that all data were transformed with the same projection from higher 457 

dimensional space to 2-dimensional space (Fig. 3, Fig. S6, and S7). Mapping to 2-dimensional 458 

space allows us to compare these different algorithms by inferring aspects of their relative 459 

positions in the original higher dimensional space. This is different than published work where 460 

PCA is performed for each individual dataset [11], which makes data incomparable following 461 

transformation. Although the simulated dataset may not have the same distribution as the original 462 

data, the performance of different algorithms in various conditions can be investigated.  463 

Evaluation of clustering performance using real, large-scale scRNA-Seq datasets: We first 464 

applied Saver and scImpute algorithms to Baron and Zeisel datasets with default parameters for 465 

imputation. Then, we applied standard Seurat process with default parameters to the imputed 466 

data using 2,000 highly expressed genes and cluster number K=9 and 9 for each dataset. The 467 

number of PCA components in Seurat [15] was set to 25 and 45 (from the elbow method [15, 468 

27]) for Baron and Zeisel datasets respectively. Finally, we applied the JOINT algorithm to both 469 

datasets. 470 

Correlation analysis (cell and gene correlation): We consider cell to cell correlation and gene to 471 

gene correlation. For cell to cell correlation, let xc=[xc,1, . . . , xc,G]
T be a vector of counts without 472 
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dropout for cell c and yc=[yc,1, . . . , yc,G]
T be the corresponding vector of imputed counts. We 473 

compute the Pearson correlation between xc and yc as  474 

The cell to cell correlation is defined as the average of ρc across all cells, i.e.,  475 

Similarly, xg=[x1,g, . . . , xC,g]
T be a vector of counts without dropout for gene g and yc=[y1,g, . . . , 476 

yC,g]
T be the corresponding vector of imputed counts. We compute the Pearson correlation 477 

between xg and yg as  478 

The gene to gene correlation is defined as the average of ρg across all gene 479 

 480 

Imputation Algorithm for Data Visualization 481 

We impute the observed counts directly. If the observed count is non-zero, we treat it as it is and 482 

do not perform imputation. If the observed count is zero, we impute it based on the posterior 483 

mean calculated from the JOINT algorithm. Consider a simple case in which we only have one 484 

cluster K=1, one negative binomial component L=2, and the observed count is 0. If the observed 485 

count is purely from the negative binomial component, the observed count 0 is the true count 486 

(the true expression is 0). If the observed count 0 is purely from the zero component, the best 487 

estimate in this case is the mean from negative binomial component which we assume is 5. If the 488 

probability that the 0 count is from the zero component q0=0.2, the probability from the negative 489 

binomial component 1-q0=0.8, and the mean of negative binomial component is 5, then the mean 490 

.

.

.

.
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of the count imputed for given observed 0 is 0.2∗5+0.8∗0=1. We apply the idea formally, given 491 

observed count xc in cell c, we first compute the posterior probability that c is from type k as 492 

where 493 

Given xg,c for gene g and cell-type k, the probability of xg,c from the l-th negative binomial 494 

component is 495 

The mean of each component l is scmg,k,l where 496 

With probability 1−p(0|k, xg,c) the observed 0 is from a negative binomial component and we do 497 

not need imputation in this case. With probability p(0|k, xg,c) the observed count is from dropout 498 

events and we use the mean expression (conditional on this count is truly expressed) as the best 499 

estimate for imputation. The probability of l>0 conditional on this count is truly expressed is  500 

We thus have the imputation value as 501 

 502 

DEG Analysis 503 

We apply the Wald test [28] for DEG analysis by directly estimating the mean and the variance 504 

of expression conditional on that gene is expressed (or no dropout) for cell-type k. Given p(k|xc) 505 

.

.

.
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and p(l=0|k, xc,g), let wc,k=p(k|xc) and vc,g,k=1−p(l=0|k, xc,g), where vc,g,k is the probability that the 506 

observed zero-count is from a negative binomial component. We find the mean by minimizing  507 

We obtain 508 

which is a weighted average with weight the probability of the observed count that is expressed 509 

in cell-type k. Similarly, we compute E(x2
c,g|k) and obtain the variance as    510 

Wald test [28] is used with the estimated mean and variance. After model training, it requires 511 

simple arithmetic operations to compute the mean and variance for Wald test. The Wald test p-512 

values are adjusted using the Benjamini and Hochberg method [29]. As hard-clustering is a 513 

special case of soft-clustering with p(k|xc)∈{0, 1}, all the proposed DEG algorithms can be 514 

readily applied to hard-clustering as well. We are aware that we can use Fisher information 515 

matrix to estimate the variance of MLE estimate. However, although a closed-form of Fisher 516 

information matrix can be derived, we find the matrix is not always positive semidefinite for real 517 

scRNA-Seq data. Therefore, the MLE estimate method cannot be used directly to identify the 518 

variance of the EM algorithm. We can also use the likelihood-ratio test. However, it requires 519 

training the JOINT multiple times, which is computational expensive.  520 
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FIGURE LEGENDS 641 

Fig. 1: Overview and convergence tests for the JOINT algorithm.  642 

(a) Workflow of the JOINT procedure. Soft-clustering, parameter optimization and DEG 643 

analysis are performed simultaneously in JOINT. Probability-based soft-clustering for cell-type 644 

identification and DEG analysis are demonstrated in the insets.  (b) Convergence of πk (k=1), 645 

qg,k,l (g=0, k=0, and l=1), αg,k,l (g=0, k=1, and l=1), and βg,k,l (g=1, k=0, and l=1) to true values 646 

with iterations. (c) Convergence of π1, q0,0,1, α0,1,1, and β1,0,1 to true values with the number of 647 

samples. (d) Convergence of π1, q0,0,1, α0,1,1, and β1,0,1 to true values with dropout probabilities. 648 

True values are indicated by blue lines. Error bars in (c) (d) indicate the full range of data 649 

variation. 650 

 651 

  652 
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Fig. 2: Validation of JOINT’s clustering performance.  653 

(a) Cell-clustering by JOINT on a simulated dataset with two cell-types and two genes. Scatter 654 

plot shows posterior probability (z-axis) for each cell (red dots) belonging to cell-type 1. 655 

Expression levels of gene 1 (Dimension 1, Dim 1) and gene 2 (Dimension 2, Dim 2) are shown 656 

on the x- and y-axis. (b) Surface plot shows the probability for individual cells belonging to cell-657 

type 1 (hot color) and 2 (cold color). (c) - (h) Comparison of the clustering performance of 658 

different algorithms. (c) Original dataset without dropout (True Labels). (d) Observed dataset 659 

with 0.2 dropout probability. (e) Cell-clustering by JOINT on the dataset with 0.2 dropout 660 

probability. (f) Cell-clustering by K-means on non-log data with 0.2 dropout probability. (g) 661 

Cell-clustering by K-means on log-transformed data with 0.2 dropout probability. (h) Cell-662 

clustering by K-mean on Saver-imputed data (non-log) with 0.2 dropout probability. Individual 663 

cells in clusters 1 and 2 are shown in red and blue, respectively. (i) - (k) The JOINT algorithm 664 

determines cell-cluster numbers automatically by likelihood (i), AIC (j), and BIC (k) tests. 665 

 666 

  667 
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Fig. 3: Comparison of clustering performance of different algorithms at various dropout 668 

probabilities and DEG numbers.  669 

(a) Cell-clustering by JOINT, Saver, and scImpute on a simulated dataset with three clusters 670 

(dropout probability is set to 0.3 and DEG number set to 150). Original data with no dropout is 671 

shown on the left. Adjusted Rand Index for each algorithm is shown. K-means clustering method 672 

is used for published imputation algorithms. Imputation algorithm in JOINT is used for data 673 

visualization. For datasets with dropout, we applied the PCA from the original dataset without 674 

dropout to get the 2-dimensional plot. (b) - (c) Cell-clustering scores are compared for JOINT, 675 

Saver, and scImpute algorithms at different dropout probabilities on a dataset with 150 DEG (b) 676 

and 50 DEG (c). (d) - (e) Correlation coefficients of cell-clustering results from JOINT, Saver, 677 

and scImpute to original “true labels” are averaged across all genes (Gene Correlation) or cells 678 

(Cell Correlation) at different dropout probabilities. Correlation coefficients generated from a 679 

dataset with 150 DEG (d) and 50 DEG (e) are shown.  680 

 681 

  682 



-34- 
 

Fig. 4: Evaluation of JOINT’s clustering performance with real, large-scale scRNA-Seq 683 

datasets.  684 

(a) - (d) Cell-clustering and t-SNE visualization of the Barron dataset. Cell-clustering from raw 685 

data (a), Saver-imputed data (b), scImpute-imputed data (c), and JOINT (d) are shown. 686 

Imputation algorithm in JOINT is used to visualize cell-clustering results. Adjusted Rand Index 687 

scores are shown for all algorithms. (e) - (h) Cell-clustering and t-SNE visualization of the Zeisel 688 

dataset. Cell-clustering from the raw data (e), Saver-imputed data (f), scImpute-imputed data (g), 689 

and JOINT (h) are shown. Imputation algorithm in JOINT is used to visualize cell-clustering 690 

results. Adjusted Rand Index scores are shown for all algorithms. 691 

 692 
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Fig. 5: Evaluation of JOINT’s performance in DEG analysis.  694 

(a) - (d) Comparison of the performance of DEG analysis algorithms when cell labels are known 695 

and different dropout probabilities are assigned to each cell-cluster. AUC scores for MAST, 696 

scDD, DESeq2, and JOINT when different dropout probabilities are assigned to each cell-cluster 697 

in datasets with 50 DEG (a), 100 DEG (b) and 150 DEG (c) are shown. (d) ROC curves for 698 

MAST, scDD, DESeq2, and JOINT when mean dropout probability for all cells is set to 0.1 699 

(dropout probability varies by 0.05 for each cell-cluster) and DEG number is set to 150. (e) - (h) 700 

Comparison of the performance of different DEG analysis algorithms when cell labels are 701 

unknown and the same dropout probability is assigned to all cells. AUC scores for MAST, scDD, 702 

DESeq2, and JOINT when the dropout probability is set to the same value for all cells in datasets 703 

with 50 DEG (e), 100 DEG (f) and 150 DEG (g) are shown. (h) ROC curves for MAST, scDD, 704 

DESeq2, and JOINT when mean dropout probability for all cells is set to 0.1 and DEG number is 705 

set to 150. (i) AUC curves of DEG analysis algorithms in combination with imputation methods 706 

and JOINT are shown. (j) Computing time of one iteration of the JOINT EM algorithm when run 707 

by TensorFlow using GPU, TensorFlow using CPU (run on compiled C code), and Python-based 708 

NumPy implementation using CPU. Computing time is tested for different numbers of genes. 709 

 710 
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Table 1: Comparison of clustering performance and computing time for JOINT and 712 

published imputation algorithms on real scRNA-Seq datasets.  713 

 714 

 715 
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Table 1
Raw Saver scImpute JOINT

Adjusted Rand Index

Baron Dataset

Jaccard Index

Adjusted Mutual Info

Adjusted Rand Index

Zeisel Dataset

Jaccard Index

Adjusted Mutual Info

Performance Scores

0.64 0.63 0.43 0.95

0.55 0.53 0.34 0.92

0.79 0.76 0.64 0.89

0.67 0.69 0.45 0.67

0.57 0.59 0.35 0.57

0.63 0.63 0.56 0.65

Saver scImpute JOINT

Baron Dataset

Zeisel Dataset

Computing Time (s)

4,777 1,010 528

18,036 3,440 836
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